Object Oriented
Programming
Sucks

Grant McLean
<grantm@cpan.org>

Everyone

“knows”
Perl OO Sucks

Actually
Perl sucks less!

Smart people
came up with a
solution

Make your
language suck less
too!

OO’s

unfulfilled promise
of

code reuse

Could Do Better

Code Reuse is
Hard

Essential
Elements

of O0?

What is an object?

*Object = Data + Behaviour

Jargon++

* Encapsulation
e Polymorphism

What's missing?

e Inheritance

What is a class?

Factories

Units of reuse

Reuse

*|nherit and override
* Aggregate and delegate

Conflict!

e Factory => Big
* Code reuse => Small

The big idea:

 Wouldn't it be cool if there was
some sort of container for
reusable code that was smaller
than a class

And now there is

Traits Defined

* Traits: composable units of behaviour
- Scharli, Ducasse, Nierstrasz, and Black, 2002

Traits Applied

* Applying Traits to the Smalltalk Collections
Classes
- Black, Scharli, Ducasse, 2003

What are traits?

A Big Picture

Class A

U

Class B < Trait X

1. Collection of
methods

2. To be composed
into classes

3. "Pure
behaviour”

4. Flattened into
the class

5. No superclass

6. Composition
operators

/. Dependencies

How do Traits
stack up?

Reuse through
Inheritance

Single inheritance
* Multiple inheritance
* Mixin inheritance

Single Inheritance

SSSSSS

SSSSSSSSSSSS

Multiple
Inheritance (Ml)

e “Multiple inheritance is good,
but there's no good way to do it”
- Steve Cook

(paraphrasing Alan Snyder)

Too evil for:

Smalltalk, Java, C# ...
 And PHP!!!!

Of course it's
allowed in Perl

Method collisions

* Not always obvious
* Not easy to fix

Mixin Inheritance

Mixin Problem #1

* Order of class composition
matters

Mixin Problem #?2

* Conflicts resolved silently

Mixin Problem #3

* What does SUPER mean?

just
don't
scale

Traits trump
Mixins

» Conflicts - compile errors®

Trait Conflict
Resolution:

e Class methods win
e Exclude trait methods
e Alias trait methods

Dependencies

e MIXINS assume
e Traits require

Using traits in Perl

e Called 'Roles’
*Implemented in Moose
e Also in Perl 6

Creating a class
with Moose:

package Car;
use Moose;
has 'colour' => (1s => 'rw', 1sa => 'Str'

1,;

) ;

Creating a role:

package Breakable;
use Moose: :Role;
has 'is broken' => (is => 'rw', isa => 'Bool');

sub break {
my $self = shift;

print "I broke\n";

$self->is broken(l);

Composing a Role
into a Class

package Car;

use Moose;

with 'Breakable’;

has 'colour' => (is => 'rw', isa => 'Str');

1,;

Move ‘break’' to class

package Car;
use Moose;
has 'is moving' => (is => 'rw', isa => 'Bool');

sub break {
my $self = shift;

$self->1s moving(0) 1f $self->1is moving;

Use a "method modifier” hook

package Breakable;

use Moose: :Role;

requires 'break’;

has 'is broken' => (is => 'rw', isa => 'Bool');

after 'break' => sub {
my $self = shift;

$self->is broken(1);
L

1,;

Lets get 'meta’

has 'l1s moving' => (

1S => 'rw',
1sa => 'Bool’,
default => 0,
traits => ['Bool'],
handles => {
start => 'set',
stop => 'unset’',
1s stopped => 'not',
b
),
sub break {

my $self = shift;
$self->stop 1f $self->is moving;

Example usage:

use Car;
my $car = Car->new(colour => 'red');

$car->start;

printf(“Car %s moving\n", $car->is moving ? "is" : "isn't"),; # 1is
printf(“Car %s broken\n", $car->is broken ? "is" : "isn't"); # isn't
$car->break;

printf(“Car %s moving\n", $car->is moving ? "is" : "isn't"); # isn't
printf(“Car %s broken\n", $car->is broken ? "is" : "isn't"),; # is
print "“Car does 'Breakable'\n" if $car->does('Breakable'); # true
print "Car 1s a 'Breakable'\n" if $car->isa('Breakable'); # false

Method Aliasing

with 'Breakable’ => {
-alias => { break => 'break bone' }
}

’reakdancer' => {
-alias => { break => 'break dance' }
b

Method Exclusion:

with 'Breakable' => {
-alias => { break => 'break bone' },
-excludes => 'break’,

}

reakdancer' => {
-alias => { break => 'break dance' },
-excludes => 'break',

}i

sub break {

perhaps call $self->break bone
and $self->break dance

Python

* Experimental implementation:
Strait

» http://pypi.python.org/pypi/strait

Acknowledgements:

* http://scg.unibe.ch/research/traits/

* The authors of the original traits papers from
which | have '‘borrowed’ liberally

* Perl Bloggers: Curtis 'Ovid’' Poe, and chromatic

