

Object Oriented
Programming

Sucks

Grant McLean
<grantm@cpan.org>

Everyone
“knows”

Perl OO Sucks

Actually
Perl sucks less!

Smart people
came up with a

solution

Make your
language suck less

too!

OO's
unfulfilled promise

of
code reuse

Could Do Better

Code Reuse is
Hard

Essential
Elements

of OO?

What is an object?

●Object = Data + Behaviour

Jargon++

●Encapsulation
●Polymorphism

What's missing?

● Inheritance

What is a class?

Factories

Units of reuse

Reuse

● Inherit and override
●Aggregate and delegate

Conflict!

●Factory => Big
●Code reuse => Small

The big idea:

●Wouldn't it be cool if there was
some sort of container for
reusable code that was smaller
than a class

And now there is

Traits Defined

● Traits: composable units of behaviour
- Schärli, Ducasse, Nierstrasz, and Black, 2002

Traits Applied

● Applying Traits to the Smalltalk Collections
Classes
- Black, Schärli, Ducasse, 2003

What are traits?

A Big Picture

Class A

Class B Trait X

1. Collection of
methods

2. To be composed
into classes

3. "Pure
behaviour"

4. Flattened into
the class

5. No superclass

6. Composition
operators

7. Dependencies

How do Traits
stack up?

Reuse through
Inheritance

●Single inheritance
●Multiple inheritance
●Mixin inheritance

Single Inheritance
Class A

Class B Class C

Multiple
Inheritance (MI)

● “Multiple inheritance is good,
but there's no good way to do it”
- Steve Cook
 (paraphrasing Alan Snyder)

Too evil for:

●Smalltalk, Java, C# ...
●And PHP!!!!

Of course it's
allowed in Perl

Method collisions

●Not always obvious
●Not easy to fix

Mixin Inheritance

Mixin Problem #1

●Order of class composition
matters

Mixin Problem #2

●Conflicts resolved silently

Mixin Problem #3

●What does SUPER mean?

Mixins
just
don't
scale

Traits trump
Mixins

●Conflicts – compile errors*

Trait Conflict
Resolution:

●Class methods win
●Exclude trait methods
●Alias trait methods

Dependencies

●Mixins assume
●Traits require

Using traits in Perl

●Called 'Roles'
● Implemented in Moose
●Also in Perl 6

Creating a class
with Moose:

package Car;

use Moose;

has 'colour' => (is => 'rw', isa => 'Str');

1;

Creating a role:
package Breakable;

use Moose::Role;

has 'is_broken' => (is => 'rw', isa => 'Bool');

sub break {
 my $self = shift;

 print "I broke\n";

 $self->is_broken(1);
}

Composing a Role
into a Class

package Car;

use Moose;

with 'Breakable';

has 'colour' => (is => 'rw', isa => 'Str');

1;

Move 'break' to class

package Car;

use Moose;

has 'is_moving' => (is => 'rw', isa => 'Bool');

sub break {
 my $self = shift;

 $self->is_moving(0) if $self->is_moving;
}

Use a "method modifier" hook
package Breakable;

use Moose::Role;

requires 'break';

has 'is_broken' => (is => 'rw', isa => 'Bool');

after 'break' => sub {
 my $self = shift;

 $self->is_broken(1);
};

1;

Lets get 'meta'
has 'is_moving' => (
 is => 'rw',
 isa => 'Bool',
 default => 0,
 traits => ['Bool'],
 handles => {
 start => 'set',
 stop => 'unset',
 is_stopped => 'not',
 },
);

sub break {
 my $self = shift;
 $self->stop if $self->is_moving;
}

Example usage:
use Car;

my $car = Car->new(colour => 'red');

$car->start;
printf("Car %s moving\n", $car->is_moving ? "is" : "isn't"); # is
printf("Car %s broken\n", $car->is_broken ? "is" : "isn't"); # isn't

$car->break;
printf("Car %s moving\n", $car->is_moving ? "is" : "isn't"); # isn't
printf("Car %s broken\n", $car->is_broken ? "is" : "isn't"); # is

print "Car does 'Breakable'\n" if $car->does('Breakable'); # true
print "Car is a 'Breakable'\n" if $car->isa('Breakable'); # false

Method Aliasing

with 'Breakable' => {
 -alias => { break => 'break_bone' }
 },
 'Breakdancer' => {
 -alias => { break => 'break_dance' }
 };

Method Exclusion:
with 'Breakable' => {
 -alias => { break => 'break_bone' },
 -excludes => 'break',
 },
 'Breakdancer' => {
 -alias => { break => 'break_dance' },
 -excludes => 'break',
 };

sub break {
 # perhaps call $self->break_bone
 # and $self->break_dance
}

Python

● Experimental implementation:
'Strait'

● http://pypi.python.org/pypi/strait

Acknowledgements:

● http://scg.unibe.ch/research/traits/
● The authors of the original traits papers from

which I have 'borrowed' liberally
● Perl Bloggers: Curtis 'Ovid' Poe, and chromatic

